F(-x)=x^2+9(-x)-4

Simple and best practice solution for F(-x)=x^2+9(-x)-4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(-x)=x^2+9(-x)-4 equation:



(-F)=F^2+9(-F)-4
We move all terms to the left:
(-F)-(F^2+9(-F)-4)=0
We add all the numbers together, and all the variables
(-1F)-(F^2+9(-1F)-4)=0
We get rid of parentheses
-1F-(F^2+9(-1F)-4)=0
We calculate terms in parentheses: -(F^2+9(-1F)-4), so:
F^2+9(-1F)-4
We multiply parentheses
F^2-9F-4
Back to the equation:
-(F^2-9F-4)
We get rid of parentheses
-F^2-1F+9F+4=0
We add all the numbers together, and all the variables
-1F^2+8F+4=0
a = -1; b = 8; c = +4;
Δ = b2-4ac
Δ = 82-4·(-1)·4
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{5}}{2*-1}=\frac{-8-4\sqrt{5}}{-2} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{5}}{2*-1}=\frac{-8+4\sqrt{5}}{-2} $

See similar equations:

| 6x+5=3-2x | | 2.4(x)+4.9(3x)=2)4959 | | 3w-6+2w=-2+2 | | 6x=2+5 | | 5c+5=2c+17 | | 4^x-6*2^x+8=0 | | 21/4x+3/7=5/14 | | -3+p/2=2 | | -6-6n=-4n-3n | | 7x^2+25x=15 | | 4-w=(w-4) | | y=9-5(-2) | | 9-5xx=-2 | | 4n-11=2n | | 3a+1=-3.6(a-1 | | -2x-4(2x-10)=-70 | | 2(x+1)=4x-3 | | 9(2)+x=44 | | 3x−1=1−3x3x−1=1−3x | | 3.7=p-1.7 | | 2h^2-13h+18=0 | | -5m=m | | 9-x=x=3-6 | | 30=x/4+14 | | 18=9-(3-x) | | 4x-6=2x+8=50 | | 0.4x+1=-1.2x+3 | | 2{x-3(x-2)}=1 | | 4x+40=3 | | -32=4(3v-2) | | 19=-9w-(5+6w) | | 4=5d |

Equations solver categories